Методы изучения взаимосвязи между явлениями

Банковская информация » Анализ деятельности банка » Методы изучения взаимосвязи между явлениями

Страница 2

Коэффициент эластичности показывает, на сколько процентов изменяется результативный признак при изменении факторного на 1%.

-коэффициент:

, (22)

где - среднее квадратическое отклонение i-го фактора; - среднее квадратическое отклонение результативного признака, которые, в свою очередь, находят по следующим формулам:

(23)

(24)

-коэффициент показывает, на какую часть среднего квадратического отклонения изменяется результативный признак с изменением соответствующего факторного.

Корреляционный анализ и регрессионный анализ являются смежными разделами математической статистики и предназначаются для изучения по выборочным данным статистической зависимости ряда величин. Корреляция и регрессия тесно связаны между собой: первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму. И корреляция, и регрессия служат для установления соотношений между явлениями и для определения наличия или отсутствия связи между ними.

Пользуясь методами корреляционно-регрессионного анализа, аналитики измеряют тесноту связей показателей с помощью коэффициента корреляции. При этом обнаруживаются связи, различные по силе (сильные, слабые, умеренные и др.) и различные по направлению (прямые, обратные). Если связи окажутся существенными, то целесообразно будет найти их математическое выражение в виде регрессионной модели и оценить статистическую значимость модели. В экономике значимое уравнение используется, как правило, для прогнозирования изучаемого явления или показателя. [6]

Следует иметь ввиду, что вероятностное или статистическое решение любой экономической задачи должно основываться на подробном осмыслении исходных математических понятий и предпосылок, корректности и объективности сбора исходной информации, в постоянном сочетании с теснотой связи экономического и математико-статистического анализа.

Для применения корреляционного анализа необходимо, чтобы все рассматриваемые переменные были случайными и имели нормальный закон распределения. Причем выполнение этих условий необходимо только при вероятностной оценке выявленной тесноты связи.

Экономические данные почти всегда представлены в виде таблиц. Числовые данные, содержащиеся в таблицах, обычно имеют между собой явные (известные) или неявные (скрытые) связи.

Явно связаны показатели, которые получены методами прямого счета, т. е. вычислены по заранее известным формулам (проценты выполнения плана, уровни, удельные веса, отклонения в сумме, отклонения в процентах, темпы роста, темпы прироста, индексы и т. д.).

Связи же второго типа (неявные) заранее неизвестны. Однако необходимо уметь объяснять и предсказывать (прогнозировать) сложные явления для того, чтобы управлять ими. Поэтому специалисты с помощью наблюдений стремятся выявить скрытые зависимости и выразить их в виде формул, т. е. математически смоделировать явления или процессы. Одну из таких возможностей предоставляет корреляционно-регрессионный анализ.[9]

Регрессионный анализ называют основным методом современной математической статистики для выявления неявных и завуалированных связей между данными наблюдений. Электронные таблицы делают такой анализ легко доступным. Таким образом, регрессионные вычисления и подбор хороших уравнений – это ценный, универсальный исследовательский инструмент в самых разнообразных отраслях деловой и научной деятельности (маркетинг, торговля, медицина и т. д.). Усвоив технологию использования этого инструмента, можно применять его по мере необходимости, получая знание о скрытых связях, улучшая аналитическую поддержку принятия решений и повышая их обоснованность.

Корреляционно-регрессионный анализ считается одним из главных методов в маркетинге, наряду с оптимизационными расчетами, а также математическим и графическим моделированием трендов (тенденций). Широко применяются как однофакторные, так и множественные регрессионные модели.

Использование возможностей современной вычислительной техники, оснащенной пакетами программ машинной обработки статистической информации на ЭВМ, делает практически осуществимым оперативное решение задач изучения взаимосвязи показателей биржевых ставок методами корреляционно-регрессионного анализа.

При машинной обработке исходной информации на ЭВМ, оснащенных пакетами стандартных программ ведения анализов, вычисление параметров применяемых математических функций является быстро выполняемой счетной операцией.

Страницы: 1 2 

Читайте также:

Классификация ценных бумаг
Ценные бумаги подразделяются на предъявительские, ордерные и именные. Предъявительская ценная бумага передается другому лицу путем вручения, ордерная бумага – путем совершения надписи, удостоверяющей передачу. Именная ценная бумага передается в порядке, установленном для уступки требований, если за ...

Российская практика распространения бюро кредитных историй
Зарубежные страны уже давно прошли этап внедрения бюро кредитных историй. Например, в США мощный толчок к созданию БКИ дал жестокий кризис 30-х годов прошлого века. В настоящее время объем кредитов в США, выданных простым гражданам, превышает объем кредитов всем фирмам и предприятиям. Российская эк ...

Анализ деятельности саморегулируемых организаций на рынке ценных бумаг
В 1992 – 1999гг. в России (в Центральном районе и в других регионах) по инициативе участников рынка ценных бумаг возникли многие виды саморегулируемых организаций. К их числу относятся объединения брокеров при крупных эмитентах, территориальные объединения профессионалов фондово-эмиссионных синдика ...

Главное меню

Copyright © 2025 - All Rights Reserved - www.bankmaker.ru